
ContraPolice: a libc Extension for Protecting
Applications from Heap-Smashing Attacks

Andreas Krennmair
krennmair@acm.org

November 28, 2003

Contents

1 Introduction 1
1.1 Buffer Overflows . 1
1.2 The Ideas of ProPolice . 2
1.3 ContraPolice . 2

2 Design 2

3 Implementation 3
3.1 dietlibc . 3
3.2 Implementation of malloc(3)/free(3) in dietlibc 3
3.3 Extensions done for ContraPolice 4

4 Conclusions 5

1 Introduction

1.1 Buffer Overflows

In today’s computer security, buffer overflows are a huge problem – most of the time
caused by inexperienced programmers using inadequate language without fully under-
standing all consequences of using. One of these languages that cause such problems
ist C, an imperative programming language developed in the early 1970s by Dennis
Ritchie. Unfortunately, at this time hardly anybody of the big problems that insecure
buffer handling could cause. This led to a set of insecure library functions in the first
versions of the C standard library that eventually got standardized together with the C
language and that are still widely used by inexperienced C programmers – and even
by their teachers, since that was the way they learned it themselves. And to keep up
backward compatibility, even new versions of the C standard (i.e.C99) still contain
these insecure functions.

The fundamental problem of buffer overflows is that memory is “accidently” be-
ing overwritten that is interpreted as e.g. a function pointer or return address inside
the program. The cause is that programmers often enough don’t really care about in-
put validation, including input length. Programmers still use insecure functions like

1

2 DESIGN 2

strcpy(3), strcat(3), sprintf(3), and so forth. These functions have the big dis-
advantage that they don’t care about buffer sizes. Unless the programmers carefully
checks buffer sizes before actually copying around strings and memory, it’s very easy
to produce programs with buffer overflows.

Basically, there are two types of buffer overflows that are usually exploited:

• Stack overflows

• Heap overflows

Stack overflows occur with buffers that are allocated on the stack, e.g. by declar-
ing local variables or by allocating memory usingalloca(3). Heap overflows occur
with buffers that are dynamically allocated on the heap, e.g. by calling functions like
malloc(3) and friends.

It has been shown in many incidents that both stack and heap buffer overflows are
exploitable, i.e. can be used to execute unauthorized and potentially malicious code.
More information on stack and heap smashing can be found in [One96] and [Kae01].

1.2 The Ideas of ProPolice

ProPolice is a technology developed by Hiroaki Etoh and Kunikazu Yoda that tackles
the problem of stack overflows. ProPolice is extensively described in [EY00]. It is
developed as an extension to the well-knowngcc (GNU C Compiler, part of the GNU
Compiler Collection). According to the paper mentioned before, ProPolice is based on
StackGuard.

The idea of ProPolice is quite simple: to protect the location of the arguments,
the return address and the previous frame pointer of a function, aguard variableis
introduced, which is initialized with aguard valueat the function’s entry point. When
the functions exits, the guard variable is checked whether it still contains the guard
value. If it doesn’t, execution of the program is halted. The guard variable, also referred
to as canary, is randomly generated.

1.3 ContraPolice

ContraPolice represents ProPolice’s counterpart, as ContraPolice protects the dynami-
cally allocated memory on the heap, while ProPolice protects the stack.

ContraPolice’s concept is similar to ProPolice: when new memory is allocated (us-
ing malloc(3) and friends), ContraPolice places adecoybefore and after the allocated
memory (the decoy in ContraPolice jargon is what the canary is in ProPolice jargon).

Before leaving a library function handling buffers – no matter whether it’s an in-
secure library function or not – the buffer’s address that is currently handled is looked
up whether it is registered in the list of dynamically allocated memory regions. In case
such a memory region is found, a check function is called to check the decoys for cor-
rect values. If the values before and after the allocated memory don’t match, an error
message is printed and the execution of the program is halted. As with ProPolice, the
decoy value is randomly generated.

2 Design

ContraPolice is an extension for thelibc, which means it is bound to a certain libc
implementation and (depending on the libc) to a platform. Currently, there’s only the

3 IMPLEMENTATION 3

reference implementation for dietlibc (a small libc for Linux) available, but the concept
itself can be implemented with other libcs, e.g.glibc or OpenBSD libc.

As explained before, when dynamically allocating memory, ContraPolice places
decoys before and after the allocated memory. The decoy value is randomly gener-
ated. Real random numbers are preferred to pseudo-random numbers, since correctly
guessing the decoy value would make it possible to overflow a buffer while bypassing
ContraPolice.

ContraPolice keeps a list of all memory blocks that were dynamically allocated
including their start address and their allocated size. The allocated size describes how
much memory was actually requested. When a new memory block is requested, it
is first allocated inside themalloc(3) routine, and then added to the list of memory
blocks before returned to the program.

During program execution, any memory address can be checked by calling the li-
brary routinecp_check() (provided by ContraPolice) to check whether this memory
address is inside a dynamically allocated memory block and if so, whether the decoy
values of this memory block are still OK. In case they aren’t, the program is immedi-
ately aborted. The algorithm of this check function is best described by the following
pseudo code:

for i=1 to mem_blk.size do
if mem_addr between mem_blk[i].start_addr and mem_blk[i].end_addr
then

check_decoy(mem_block[i])
end

end

This means when a memory address is checked that is not dynamically allocated
by callingmalloc(3) and thus not in the list of memory blocks, it is simply ignored.

To enforce these checks, all functions that modify buffers in any way are modified
to call cp_check() before returning. This means that if e.g.strcpy(3) copies a
string of 50 characters into a buffer of 30 characters, andcp_check() is called before
strcpy(3) returns, the program will abort, and a potential exploit that could have been
planted into the program via this buffer overflow will never be executed.

When a dynamically allocated memory block is disposed by callingfree(3), the
memory block is first checked usingcp_check(), and then removed from the list of
allocated memory blocks that ContraPolice keeps.

3 Implementation

3.1 dietlibc

The reference implementation of ContraPolice is based on dietlibc, a libc that is opti-
mized for small size. I chose dietlibc over other libc implementations since the source
code is very small and simple and easy to understand and modify. More information
on dietlibc can be found in [Lei01].

3.2 Implementation of malloc(3)/free(3) in dietlibc

dietlibc’s implementation ofmalloc(3), free(3) and friends is very simple: since
dietlibc is Linux only, it uses a certain property of Linux’smmap(2) system call: when

3 IMPLEMENTATION 4

a file descriptor of−1 is passed, anonymous memory is allocated, which then can be
deallocated by callingmunmap(2).

Sincemunmap(2) requires additional information that is not passed in to thefree(3)
call, the memory management routines have to keep track of this information by them-
selves. This is done by allocating more memory than requested. This newly allocated
memory first contains this information, which is kept in an own structure__alloc_t.
The memory right after this structure is returned bymalloc(3). When deallocating
the memory again,free(3) only has to take the pointer to the memory block to deal-
locate and has to take a look before its beginning. This is exactly where the__alloc_t
structure resides. For convinience, dietlibc internally contains two preprocessor macros
that make it easy to compute the memory address to return from the memory address
returned bymmap(2) and vice versa.

#define BLOCK_START(b) (((void*)(b))-sizeof(__alloc_t))
#define BLOCK_RET(b) (((void*)(b))+sizeof(__alloc_t))

Since the granularity of themmap(2) system call is actually huge (e.g. 4 kB on
i386), dietlibc realizes a simple list-based memory management for small memory
blocks in user space. This raises the code size of themalloc(3) andfree(3) library
functions a little bit, but significantly lowers the memory footprint especially for pro-
grams that dynamically allocate a great number of relatively small memory blocks.

3.3 Extensions done for ContraPolice

To keep track of all allocated memory blocks, ContraPolice needs to keep a list of them.
In the reference implementation, this is a simple linked list. New memory blocks are
added to the head of the list (thus making itO(1) complex and keepingmalloc(3)
efficient). When a memory block is deallocated, it has to be removed from the list.
This means that the whole list has to be iterated over. This makes the deallocation
routine more complex than the allocation routine, i.e.O(n).

To be able to strictly check for possible heap overflows, ContraPolice needs to keep
track of how much memory was exactly allocated. What is also required is the decoy
value, which is also stored in the__alloc_t. The other decoy value is stored in a
__decoy_t structure. The__alloc_t structure itself looks like this:

typedef struct __alloc {
void* next;
size_t size;
struct __alloc * cp_next;
size_t alloc_size;
uint32_t decoy;

} __alloc_t;

To briefly explain the elements of this structure:

• next: a pointer needed for dietlibc’s list-based memory management.

• size: contains the actual size of the memory block allocated viammap(2).

• cp_next: a pointer that points to the next element in the list of memory blocks.

• alloc_size: the memory block size that was requested viamalloc(3), i.e. the
number of bytes between the __alloc_t structure and the __decoy_t structure.

4 CONCLUSIONS 5

The __decoy_t structure is as simple as that:

typedef struct {
uint32_t decoy;

} __decoy_t;

As we’ve learned before, general information about the allocated memory is placed
the actual memory block that is returned bymalloc(3). What we still need is the
second decoy value. This second decoy value is placed after the returned memory
block.

Whenevercp_check() is called, the list of allocated memory block is iterated
over, to check whether a certain address is dynamically allocated, and if so, whether
the corresponding memory block’s decoy values are still intact.

The decoy value itself is generated by reading from/dev/urandom, which is gen-
erally a good place provided by Linux to get good pseudo-random numbers. In case
that not enough random data can be read from this device, ContraPolice switches back
to pseudo-random numbers provided by the standard library. The quality of the random
numbers should be as high as possible, to make it as difficult as possible to guess the
right value for potential attackers.

4 Conclusions

In this paper I gave an introduction into a concept of a heap-smashing protection built
into a libc, including an explanation of a reference implementation of ContraPolice for
dietlibc.

One major of this implementation of ContraPolice is that every time a linked list has
to be iterated over, which generally makes programs and libraries using ContraPolice
noticeably slower, especially with a lot of allocated memory blocks. The price for this
performance penalty is an improved protection against heap buffer overflows, even for
programs that are written insecurely.

In the future, the ContraPolice concepts will be implemented for other libcs. I
hope that it will make it into the libcs for mainstream free Unix-like operating systems,
improving everybody’s daily life computer security.

References

[EY00] ETOH, Hiroaki ; YODA, Kunikazu. Protecting from stack-smashing at-
tacks. http://www.research.ibm.com/trl/projects/security/ssp/
main.html. 2000

[Kae01] KAEMPF, Michel. Vudo - An object superstitiously believed to embody mag-
ical powers. http://www.phrack.org/phrack/57/p57-0x08. 2001

[Lei01] VON LEITNER, Felix. diet libc. http://www.fefe.de/dietlibc/talk.
pdf. 2001

[One96] ONE, Aleph.Smashing The Stack For Fun And Profit. http://www.phrack.
org/phrack/49/P49-14. 1996

