Design Proposal for a Meta-Data-Driven Content
Management System

Andreas Krennmair
ak@synflood.at

7th August 2005

Contents

1 Basic Idea 1
2 Services 2
3 Programmability 2
4 Storage 2
5 Interface 3
6 Crawling 3
7 Conclusions 3

1 Basic Idea

The idea of this new meta-data-driven content management system (CMS),
which will be codenamed “priamus”, is to store content objects (i.e. files),
make them retrievable, keep their revision record, and associate a number of
required and/or required meta-data fields, so-called “attributes” with them.

Every content object is identified by its object ID and its revision number.
The latest revision always has the highest revision number.

The attributes can be optional or required, and can be of different data
types, which depend on the underlying storage system’s support. Data types
that must be supported are e.g. text, integer or date. Additional data types
like BLOBs depend on the underlying storage system.

In addition, every content object is of a certain content type, like “static web
page” or “dynamically scripted page”. A set of predefined system types will be
set up by default (which also give certain pages a special meaning), additional
user-defined types can be added later by the user.

The following attributes are mandatory:

e content type

e object ID



e object title
e revision number
e filename in the filesystem

All other attributes are optional.

2 Services

A service provides means to display a content object (optionally including its
attributes) via HT'TP. This can be simply printing out the static content of the
page or transforming or interpreting the file content in some way (see “Pro-
grammability” below).
When a service is called, it is provided with the object ID and optionally, the
revision number, which it then uses to retrieve the correct object and display it.
By default, two services will be provided:

e show page: displays static pages, and interprets dynamically scripted
pages.

e show page source: displays the static content, even if the page is a dy-
namically scripted page.

Additional services could be “render XML page”, which takes the content,
transforms it according to a XSL template (whose filename is taken from an
attribute) and then displays it, or an “inspect content object”, which displays
the content object’s attributes in a pretty form.

If the page to be displayed is a dynamically scripted page, then any additional
parameters that was provided to the service will be passed to this page.

3 Programmability

As mentioned above, on of the special content types will be “dynamically
scripted page”. When a content object of this page is shown via the “show
page” service (see above), then the content of this file will be executed and its
output will be displayed. A language or system such as JSP, ePerl, eRuby or
PHP where code is embedded with HTML /XML source seems to be advanta-
geous as it combines embedded code with powerful languages. Which language
or system will be used depends on the implementation language of the CMS.

4 Storage

The storage of the attributes will be implemented by directly mapping the
attributes to the fields of a table in an SQL database. Currently, PostgreSQL is
the preferred system, as it is licensed under a free license, and it provides very
powerful mechanisms that compete with commercial, expensive databases. And
it is definitely a lot more powerful than simple SQL databases like MySQL.

The content type will be kept in a separate type table, and will be associated
via the ID with the content objects.



The content itself will be stored to a special location in the filesystem, where
each revision has its own, unique filename. Special measures should be taken
that even when a lot of content and/or a lot of revisions will be added to the
CMS, no directory shall be filled up with a lot of files that could slow down
reading the directory content significantly.

5 Interface

The CMS will not provide a user interface by itself, but instead only comes
with an interface that allows access to all the content management functionality
from other programs. This interface will be implemented using the XML-RPC
protocol.

This lack of user interface gives the advantage that the developers can fully
concentrate on the CMS’ core functionality without having to cope with details
of the user interface. A comfortable user interface can be implemented later,
e.g. as web interface or as a Java rich client. Today, most modern program-
ming languages provide XML-RPC language binding in one form or another, so
interfacing with the CMS shouldn’t be much of a problem.

6 Crawling

To transform the (dynamically generated) content of the CMS to static content
that can then be delivered to the end-user with the highest speed available, a
so-called “crawler” will be provided.

The crawler is fed with one or more “crawler overview pages” (COPs). Such
a COP contains links to all pages that need to be crawled. The crawler then
follows these links and downloads and stores these pages. The resulting filename
of the stored pages needs to be configurable, depending on the dynamic URL
of the crawled page.

The reason for creating a static version of (parts of) the content from the
CMS is that delivering static files via HT'TP can be highly optimized for speed,
including clustering techniques.

7 Conclusions

This design document gives an overview about the ideas of a new concept of
content management that has never been implemented before in the open source
world. It reduces content management to its core, using a simply and modular
design, making it easy to implement the needs of high-quality content manage-
ment. This CMS is not designed to make content management easy like other
open source CMS, but instead is here to satisfy the needs for professional, large-
scale content management. In fact, the ideas presented here are vaguely based
on the concepts found in a large-scale CMS that was used for the implementa-
tion of a major music download platform, which shows that the basic ideas are
proven to work in the real world. The major difference although is that this
CMS is designed for simplicity.



